PLANNING AND DATA SHEET Hole AT14 - #2

Plan Actual

1 Site/Hole Name AT1C AT14 - #2

2 Latitude 27° 56′ 15.4″ N **3 Longitude** 89° 16′ 50.3″ W

4 Water Depth (m) 1289 **5 Plan TDbsf (m)** 307

6 Scientific Objectives

Logging/coring at AT1C will penetrate sediments adjacent to a mound structure at which hydrate has previously been recovered (unpublished JIP data) and for which a high-reflectivity feature is interpreted at approximately 30 m below the sea floor. Coring and logging will recover sediments, hydrate, and pore fluid data to look at vertical variability and its relation to variation in seismic attributes. A velocity pull-down is interpreted in the seismic data, and gas analyses will provide direct measurement of the gas concentration and composition that created the observed pull-down.

7	7 8 Shipboard Sampling program 9 Sh													Shipboard Experiments												
																			Hydrate							
															Chem.Anal.	Multi-		Vertical	dissociation		pocket					
	Start														(Salinity,Alkal			gamma	with gas	torvane	penetrom					
	Depth		Core length					Pore				Piezo-	Temp-	Gas	nity,Sulfate/s		X-ray CT	density	sampling &		eter shear		lab vane			
Core Number	(mbsf)	(mbsf)	(m)	FHPC/FC	FPC/HRC	Headspace	Void gas	Water	Sediment	Microbiol.	IR imaging	probe	erature	analyses		logger	scanner	logger	analysis	strength	strength	UU-triaxial	shear			
1	0.0	9.1	9.1	1		6	1	5		2	1	1	1	7	20	1				1	1	1	1			
2	9.1	10.1	1.0		1										0		1	1	1				ļ			
3	10.1	19.3	9.1	1		3	3	3		1	1		1	6	12	1				1	1	1	1			
4	19.3	20.3	1.0	4	1										0		1	1					—			
5	20.3	29.4	9.1	1			3	2		1	1		1	3	8	1				1	1	1	1			
6	29.4	30.4	1.0	4	1		2								0		1	1								
- 1	61.0	70.1	9.1	1			3	2		1	1		1	3	8	1										
8	70.1	79.2	9.1	1			3	2		1	1			3	8	1				1	1	1	1			
9	79.2	80.2	1.0	1	1		2								0		1	1	1	4			\vdash			
10	134.1	143.3	9.1	1			2	1		1	1	1	1	2	4	1				1	1	1	1			
11	143.3	152.4	9.1	1			2	1			1				4	1				1	1	1	1			
12	182.9	192.0	9.1	1			2	1		1	1			2	4	1				1	1	1	$\frac{1}{4}$			
13	192.0	201.2	9.1	1			2	1		4	1			2	4	1				1	1	1	1			
14	201.2	210.3	9.1	1			2	1		1	1			2	4	1				4	4		 			
15	210.3	219.4	9.1 9.1	1			2	1		4	1		_	2	4	1				1	1	1	1			
16 17	273.0 282.1	282.1 283.1	1.0	1	- 1		2	1		1	1		1	2	4	1	1	1		1	1	1				
18	283.1	284.1	1.0		1		2	1		1	1						1	1		1	1	1	1			
19	284.1	285.1	1.0		1		2	1		1	1						1	1		1	1	1	1			
20	285.1	294.3	9.1	1	_		2	1		1	1	1	1	2	1	1				1	1	1	1			
21	294.3	303.4	9.1	1			2	1		-	1		- '	2	4	1				1	1	1	1			
22	303.4	307.0	3.6	1			2	1		1	1		1	2	4	1				1	1	1	1			
Totals	303.4	307.0	138.6	15	7	q	39	27	0	13	18	3	8	42	96	15				14	14	14	14			

Notes

- a. FHPC cores (called H cores) and FC cores (called C cores) of 9.1 and 4.6 m length will be cut into 1 m sections. Samples will be designated by Site-Core-Section (Centimenter interval). For example, the first sample for pore water from core 1H will be a 10-cm whole round at the base of section 1 will be designated Hole AT14 #2-1H-1 (90-100).
- b. Whole round cores (10-cm) to be saved in the section adjacent to Piezoprobe